Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
van_Driel, Barry; Palaiologou, Nektaria (Ed.)Increasing diversity in higher education and the workforce requires undergraduate students to learn to work together effectively to address scientific and social issues. Our goal is to learn how best to facilitate teamwork among students from Historically Black Universities (HBU) and Predominantly White Institutions (PWI) to promote collaborative learning. We analyzed the evolving knowledge, perceptions, and attitudes of participating students as they developed close working relationships through a ‘study-within-a-study’ design where student pairs (one from an HBU and one from a PWI) conducted their own research project while we analyzed how these students interacted with their partners. The Association of American Colleges and Universities (AACU) rubric of Intercultural Knowledge and Competence was used to develop a set of codes for assessing transcripts of student meetings. AACU defines six attributes of this rubric including cultural self-awareness, cultural worldview frameworks, empathy, verbal and nonverbal communication, curiosity, and openness. Our pilot results suggest that students willing to engage collaboratively with others from different cultural or educational backgrounds can display attributes of intercultural competence, while those not willing to engage in the collaborative process may not exhibit such competence. We also learned that students require the same initial preparation necessary for the assigned project.more » « less
-
Undergraduates’ distress has increased dramatically since the COVID-19 pandemic’s onset, raising concerns for academic achievement. Yet little is known about the mechanisms by which pandemic-related distress may affect students’ learning and performance, and consequently, how we might intervene to promote student achievement despite the continuing crisis. Across two studies with nearly 700 undergraduates, we highlight the mediating role of distraction: undergraduates higher in COVID-19 distress saw lower learning gains from an asynchronous neuroscience lesson due to increased mind wandering during the lesson. We replicate and extend this finding in Study 2: probing what pandemic-related stressors worried students and revealing systematic differences among students of marginalized identities, with largest impacts on first-generation, Latinx women. We also examined whether stress reappraisal or mindfulness practices may mitigate the observed distress-to-distraction pathway. Only mindfulness reduced mind wandering, though this did not translate to learning. We conclude with implications for practice and future research.more » « less
-
null (Ed.)ABSTRACT Galaxy internal structure growth has long been accused of inhibiting star formation in disc galaxies. We investigate the potential physical connection between the growth of dispersion-supported stellar structures (e.g. classical bulges) and the position of galaxies on the star-forming main sequence at z ∼ 0. Combining the might of the SAMI and MaNGA galaxy surveys, we measure the λRe spin parameter for 3289 galaxies over $$9.5 \lt \log M_{\star } [\rm {M}_{\odot }] \lt 12$$. At all stellar masses, galaxies at the locus of the main sequence possess λRe values indicative of intrinsically flattened discs. However, above $$\log M_{\star }[\rm {M}_{\odot }]\sim 10.5$$ where the main sequence starts bending, we find tantalizing evidence for an increase in the number of galaxies with dispersion-supported structures, perhaps suggesting a connection between bulges and the bending of the main sequence. Moving above the main sequence, we see no evidence of any change in the typical spin parameter in galaxies once gravitationally interacting systems are excluded from the sample. Similarly, up to 1 dex below the main sequence, λRe remains roughly constant and only at very high stellar masses ($$\log M_{\star }[\rm {M}_{\odot }]\gt 11$$), do we see a rapid decrease in λRe once galaxies decline in star formation activity. If this trend is confirmed, it would be indicative of different quenching mechanisms acting on high- and low-mass galaxies. The results suggest that whilst a population of galaxies possessing some dispersion-supported structure is already present on the star-forming main sequence, further growth would be required after the galaxy has quenched to match the kinematic properties observed in passive galaxies at z ∼ 0.more » « less
-
ABSTRACT We use comparisons between the Sydney-AAO Multi-object Integral Field Spectrograph (SAMI) Galaxy Survey and equilibrium galaxy models to infer the importance of disc fading in the transition of spirals into lenticular (S0) galaxies. The local S0 population has both higher photometric concentration and lower stellar spin than spiral galaxies of comparable mass and we test whether this separation can be accounted for by passive aging alone. We construct a suite of dynamically self-consistent galaxy models, with a bulge, disc, and halo using the galactics code. The dispersion-dominated bulge is given a uniformly old stellar population, while the disc is given a current star formation rate putting it on the main sequence, followed by sudden instantaneous quenching. We then generate mock observables (r-band images, stellar velocity, and dispersion maps) as a function of time since quenching for a range of bulge/total (B/T) mass ratios. The disc fading leads to a decline in measured spin as the bulge contribution becomes more dominant, and also leads to increased concentration. However, the quantitative changes observed after 5 Gyr of disc fading cannot account for all of the observed difference. We see similar results if we instead subdivide our SAMI Galaxy Survey sample by star formation (relative to the main sequence). We use EAGLE simulations to also take into account progenitor bias, using size evolution to infer quenching time. The EAGLE simulations suggest that the progenitors of current passive galaxies typically have slightly higher spin than present day star-forming disc galaxies of the same mass. As a result, progenitor bias moves the data further from the disc fading model scenario, implying that intrinsic dynamical evolution must be important in the transition from star-forming discs to passive discs.more » « less
-
Abstract Progress in gravitational-wave (GW) astronomy depends upon having sensitive detectors with good data quality. Since the end of the Laser Interferometer Gravitational-Wave Observatory-Virgo-KAGRA third Observing run in March 2020, detector-characterization efforts have lead to increased sensitivity of the detectors, swifter validation of GW candidates and improved tools used for data-quality products. In this article, we discuss these efforts in detail and their impact on our ability to detect and study GWs. These include the multiple instrumental investigations that led to reduction in transient noise, along with the work to improve software tools used to examine the detectors data-quality. We end with a brief discussion on the role and requirements of detector characterization as the sensitivity of our detectors further improves in the future Observing runs.more » « less
-
Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates.more » « less
An official website of the United States government

Full Text Available